كم أعرف عن تخزين المضلعات

كم أعرف عن تخزين المضلعات

يعرض لكم موقع ArabWriters كم أعرف عن تخزين المضلعات

كم أعرف عن المضلعات

ما مقدار ما أعرفه عن المضلعات؟ من خلال المقالة التالية في متجرنا ، نوفر لك بحثًا عن أنواع المضلعات المماثلة. الزوايا ، ودراسة الأنواع المختلفة من المضلعات أمر ضروري ، لأنه يتم تدريسها في مواضيع الرياضيات بمستويات بحث مختلفة ، لأنها تستخدم في العديد من العمليات الهندسية والعديد من التطبيقات اليومية.من خلال هذه المقالة ، يمكنك فهم أن كل شيء مرتبط هذا متعلق بفرع الرياضيات.

ما هو المضلع

  • المضلع شكل هندسي ثنائي الأبعاد يتكون من ثلاثة خطوط مستقيمة أو أكثر ، وتتقاطع نهاياتها لتشكل شكلًا هندسيًا. من أمثلة المضلعات المثلثات والأشكال الرباعية والخماسية والسداسية. عادة ما يكون عدد أضلاع المضلع معروفًا ، وكما يوحي الاسم ، يتكون الشكل الرباعي من تقاطع أربعة خطوط. أما البنتاغون فيتكون من تقاطع خمسة خطوط مستقيمة الخ …
  • يمكن تعريف المضلعات على أنها جميع الأشكال الهندسية المكونة من خطوط مستقيمة ، ومن هذا التعريف ، يمكننا القول أن جميع الأشكال الهندسية التي تحتوي على منحنيات لا يمكن اعتبارها مضلعات مثل الدوائر.

نوع المضلع

يوجد العديد من أنواع المضلعات في الأشكال الهندسية ، ويتم شرح كل نوع بالتفصيل أدناه:

  • مضلع متساوي الأضلاع: إنه مضلع تتساوى فيه جميع الجوانب في الطول.
  • مضلع متساوي الأضلاع: إنه مضلع بزوايا متساوية.
  • مضلع بسيط: إنه مضلع به جوانب أو جوانب منفصلة.
  • مضلع مقعر: المضلعات ذات الزوايا الداخلية أكبر من 180 درجة
  • مضلع محدب: المضلع المحدب هو مضلع بزاوية أقل من 180 درجة.
  • مضلع منتظم: المضلع المنتظم هو مضلع متساوي الأضلاع.
  • مضلع معقد: مضلع متقاطع من جميع الجوانب.

الأجزاء المضلعة

يتكون المضلع من مجموعة من الأجزاء التي تتحد لتشكل شكلًا هندسيًا. يمكنك معرفة المزيد عن جزء المضلع في الأسطر التالية:

  • ركن: الزاوية هي الزاوية بين تقاطع خطين مستقيمين والزاوية بين تقاطع جانبي المضلع.
  • جانب: أضلاع المضلع عبارة عن جوانب أو خطوط مستقيمة ، وتسمى الخطوط المستقيمة التي يتكون منها المضلع الجانب
  • رأس: رأس المثلث هو النقطة التي يتقاطع فيها أي جانبين من المضلع ليشكل زاوية ، تسمى قمة الرأس
  • قطر الدائرة: القطر هو الخط الذي يربط بين الرؤوس المجاورة ، ويسمى القطر
  • الفراغ: مساحة المضلع هي المساحة الموجودة داخل المضلع ، تسمى المنطقة
  • محيط: محيط المضلع هو مجموع أضلاعه ، يسمى المحيط.

مثال مضلع

يوجد تحت اسم المضلع العديد من الأشكال الهندسية ، يشير مصطلح المضلع إلى جميع الأشكال الهندسية المكونة من خطوط مستقيمة. لذلك يمكننا القول أن المثلثات عبارة عن مضلعات ، والمستطيلات عبارة عن مضلعات ، ومربعات ، ومعينات ، ومتوازيات أضلاع ، وشبه منحرف ، وفيما يلي بعض التفسيرات ذات الأولوية لأنواع المضلعات:

ميدان

  • إنه شكل هندسي له أربعة جوانب متساوية ، لذا كل زواياه متساوية.
  • الأضلاع المتقابلة للمربع متوازية وجميع أركانها متساوية.
  • أقطار المربع متساوية في الطول والعمودية ، والقطران ينقسمان إلى نصفين.
  • يمكن حساب مساحة المربع بضرب الضلع في نفسه ، ولحساب المحيط ، يجب ضرب طول الضلع في 4.

مستطيل

  • المستطيل متوازي أضلاع بزوايا قائمة.
  • جميع جوانب المستطيل متوازية نسبيًا ، لذا أطوالها متساوية.
  • يمكن حساب مساحة المستطيل بضرب طوله في عرضه ، ويحسب محيطه وفقًا للصيغة التالية: (الطول + العرض) × 2

متوازي الاضلاع

  • متوازي الأضلاع هو مضلع رباعي الأضلاع.
  • متوازي الأضلاع ضلعان متوازيان.
  • في متوازي الأضلاع ، الزاوية المتصلة والضلع المقابل متساويان.
  • جميع الأقطار في متوازي الأضلاع متساوية.
  • يمكن حساب مساحة متوازي الأضلاع بضرب طول القاعدة في الارتفاع ، ويحسب المحيط وفقًا للصيغة التالية: (طول القاعدة × الارتفاع).

شبه منحرف

  • هذا الشكل له جوانب غير متساوية وزوايا غير متساوية وضلعان متوازيان وضلعان غير متوازيين.
  • مجموع الزوايا المتتالية في الرسم البياني المائل يساوي 180 درجة.
  • تتقاطع أقطار شبه المنحرف عند نقطة واحدة.
  • يمكن حساب مساحة شبه المنحرف بضرب الارتفاع في مجموع طول القاعدة ثم الضرب في اثنين ، ولحساب محيط شبه المنحرف ، اجمع طول ضلعه.

موعد

  • إنه متوازي أضلاع متساوي الأضلاع.
  • جميع الأضلاع المتقابلة متوازية.
  • الأقطار في المعين متساوية بالدرجات.
  • مجموع زاويتين متتاليتين من المعين يساوي 180
  • أقطار المعين متعامدة مع بعضها البعض ومقسمة بالتساوي.
  • يمكن حساب المعين بضرب طول قاعدته في ارتفاعه ، ويمكن حساب مساحته بضرب طول ضلعه في أربعة.

مضلع مماثل

يمكن تعريف المضلعات المتشابهة على أنها مجموعة من الأشكال الهندسية ، وعلى الرغم من اختلاف مقاييسها ، إلا أنها متشابهة. وهي مقسمة إلى العديد من الأنواع ، بما في ذلك المضلعات المثلثية ، والأشكال الرباعية ، والخماسية ، والسداسية ، والمثمنات. يمكنك التعرف على أنواعها من خلال الأسطر التالية التي توضح بالتفصيل المضلعات المتشابهة:

  • المضلعات المثلثية المتشابهة: مجموع الزوايا الداخلية للشكل هو 180 درجة ، والمضلع المثلث له ثلاث زوايا. هذه الزوايا هي نتيجة تقاطع الأضلاع. الزوايا متساوية وكل الأطوال متساوية. شكل المضلع الثلاثي مثلث.
  • الأشكال الرباعية المماثلة: يتكون الشكل الرباعي من أربعة جوانب وأربع زوايا ، ومجموع زوايا الشكل الرباعي 360 درجة ، كل منها 90 درجة ، وطول ضلعها.
  • خماسيات مماثلة: يمثل البنتاغون شكلًا هندسيًا مكونًا من خمسة رؤوس ، وهذه الرؤوس هي نتيجة تقاطع حواف الشكل ، ومجموع زوايا البنتاغون هو 540 درجة ، لذلك يطلق عليه كثير من الناس اسم البنتاغون.
  • السداسيات ذات المضلعات المتشابهة: سداسي الأضلاع له ستة أضلاع متساوية الطول ، ومجموع زواياه الست هو 720 درجة ، أي أن إحدى زواياه في الشكل السداسي تساوي 120 درجة.
  • ثمانية مضلعات متشابهة: يتكون المثمن من ثمانية جوانب متساوية الطول ، ومجموع زوايا الشكل السداسي هو 1080 درجة ، أي درجة الزاوية 135 درجة.

ماذا تعلمت من المضلعات

  • المضلع شكل هندسي مغلق يتكون من تقاطع مجموعة من الخطوط المستقيمة التي تتقاطع عند نقاط تسمى الرؤوس. هذه الرؤوس مقيدة بزاوية الشكل ، وأشكال المضلعات هي مستطيلات وأرباع ومثلثات.
  • تأتي كلمة المضلع من اليونانية وتتكون من كلمتين: بولي ، مما يعني العديد ، وجون ، والتي تعني الزاوية. إنه مضلع في اليونانية.

ناقشنا معكم في مقالتنا اليوم إجابة مفصلة لسؤال ما مقدار ما أعرفه عن المضلعات؟ في هذه المرحلة نكون قد أنهينا حوارنا معكم متابعينا الكرام. نأمل أن نتمكن من تزويدك بمحتوى مفيد ، بما في ذلك جميع استفساراتك ، ونوفر عليك الاضطرار إلى مواصلة البحث ومقابلتك في مكان آخر.مقالات من مخازن المعلومات.

المراجعين

1

اكتشف بالإضافة إلى ذلك المزيد من المقالات في مجلتنا و في تصنيفات علم النفس و الصحة .

نأمل أن تكون مقالتنا كم أعرف عن تخزين المضلعات

قد اعجبكم
لا تنسى مشاركة المقالة على Facebook ، twitter و e-mail مع الهاشتاج ☑️

Comments
Loading...